
Automatically Improving Constraint Models in Savile

Row through Associative-Commutative Common

Subexpression Elimination

Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, and Ian Miguel

School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SX, UK

{pwn1, ozgur.akgun, ian.gent, caj21, ijm}@st-andrews.ac.uk

Abstract. When solving a problem using constraint programming, constraint

modelling is widely acknowledged as an important and difficult task. Even a

constraint modelling expert may explore many models and spend considerable

time modelling a single problem. Therefore any automated assistance in the area

of constraint modelling is valuable. Common sub-expression elimination (CSE)

is a type of constraint reformulation that has proved to be useful on a range of

problems. In this paper we demonstrate the value of an extension of CSE called

Associative-Commutative CSE (AC-CSE). This technique exploits the proper-

ties of associativity and commutativity of binary operators, for example in sum

constraints. We present a new algorithm, X-CSE, that is able to choose from a

larger palette of common subexpressions than previous approaches. We demon-

strate substantial gains in performance using X-CSE. For example on BIBD we

observed speed increases of more than 20 times compared to a standard model

and that using X-CSE outperforms a sophisticated model from the literature. For

Killer Sudoku we found that X-CSE can render some apparently difficult in-

stances almost trivial to solve, and we observe speed increases up to 350 times.

For BIBD and Killer Sudoku the common subexpressions are not present in the

initial model: an important part of our methodology is reformulations at the pre-

processing stage, to create the common subexpressions for X-CSE to exploit. In

summary we show that X-CSE, combined with preprocessing and other reformu-

lations, is a powerful technique for automated modelling of problems containing

associative and commutative constraints.

1 Introduction

When solving a problem using constraint programming, constraint modelling is widely
acknowledged as both important and difficult [13]. A problem may have many mod-
els, and it is difficult to know which will be solved most efficiently by a given con-
straint solver. Even a constraint modelling expert may explore many models and spend
considerable time modelling a single problem. Therefore, any automated assistance in
constraint modelling is valuable.

We focus on the process we call tailoring: given a constraint model in a solver-
independent language and a value for each of its parameters, translate it into a form
suitable for efficient solving by a given constraint solver. Tailoring must be efficient: it is

performed separately for each problem instance, hence any computationally expensive
reformulation must pay for itself by saving time during solving.

Common sub-expression elimination (CSE) is a type of constraint reformulation
that has proved to be useful on a range of problems [16, 15]. Herein we investigate an
extension of CSE, Associative-Commutative CSE (AC-CSE), which exploits the proper-
ties of associativity and commutativity of binary operators (e.g. + and ×). Expressions
containing these operators can be rearranged to reveal common subexpressions. As an
example, take the following two constraints over four variables:

w + x+ y + z = 6, z + y + w = 5

Conventional constraint propagation will not reveal the fact that x = 1. AC-CSE could
extract w+ y + z and replace it with an auxiliary variable a to give the following three
constraints. Performing constraint propagation on this set will assign x to 1.

x+ a = 6, a = 5, a = w + y + z

An Associative-Commutative Common Subexpression (AC-CS) of a set of associative
and commutative (AC) expressions (e.g. sums) is a set of at least two terms that all
appear in each one of the AC expressions (sums). In the example above, the set of
three terms {w, y, z} appears in both the original sum constraints, hence {w, y, z} is an
AC-CS of the two sum constraints.

A simple normalisation step, such as sorting the terms in the AC expressions, fol-
lowed by examining contiguous subsequences of terms within AC expressions, can
reveal some but not all of the available AC-CSs. More is necessary to find AC-CSs
in general. Consider the example above, with an alphabetical ordering of the terms
w+ x+ y + z and w+ y + z. The largest contiguous subsequence of both is y + z, so
this approach would miss the maximal AC-CS w + y + z.

In this paper we introduce and describe in detail a new algorithm, X-CSE, to per-
form AC-CSE in constraint problems. We show that X-CSE is able to find common
subexpressions (CSs) automatically in a variety of problems, and that using these subex-
pressions can greatly reduce search and improve solving time. A particular advantage of
X-CSE is that it is able to find and exploit small CSs that occur in many constraints, as
well as larger ones that occur in few constraints. This is made possible by finding CSs
that contain auxiliary variables introduced at an earlier step of the algorithm. We can
thus exploit the occurrence of many small CSs without losing the advantages of finding
larger ones. We illustrate this with an example below in Sections 2.3 and 3.3. The reuse
of auxiliary variables created by AC-CSE in subsequent common subexpressions is an
important advantage of X-CSE.

In addition, we show that X-CSE can be particularly effective in combination with
other automated modelling techniques. In this paper we give two examples. First, we
show that automated reformulation of an all-different constraint can lead to sum con-
straints, which can be exploited by X-CSE. Second, we see that by applying Singleton
Arc Consistency at the preprocessing stage, we reveal new common subexpressions
that can be exploited by X-CSE. These combinations show in particular that X-CSE is
a valuable addition to the armoury of automated constraint modelling techniques, both
alone and in combination with other techniques.

We evaluate the new algorithm on four problem classes: BIBD, the SONET prob-
lem, Killer Sudoku and Molnar’s Problem. When applying X-CSE we demonstrate sub-
stantial gains in performance. On BIBD we observed speed increases of more than 20
times compared to a standard model. We found that X-CSE outperforms a sophisticated
model from the literature with manually derived implied constraints [7]. On the SONET
problem we observed speed increases of 5 times on some instances. For Killer Sudoku
we found that applying X-CSE can render some apparently difficult instances almost
trivial to solve, and we saw more than 300 times speed increases in some cases. Mol-
nar’s Problem exhibits more modest gains peaking at 5 times faster for the most difficult
instance.

2 Related Work

The context of our work is reformulation of constraint modelling languages such as
OPL [19], MiniZinc [18] and ESSENCE′ [16]. These languages have a collection of
global constraints, arithmetic and logical operators that act on finite-domain or real
interval decision variables. In this paper we consider finite-domain decision variables.

Such languages are not directly accepted by constraint solvers but must be tailored
into a form suitable for a constraint solver. During tailoring the model can be refor-

mulated to improve the efficiency of the constraint solver. There are many ways of
producing better constraint models, some requiring manual interaction [2], and others
that are automated [8]. For example these tools can discover global constraints or auto-
matically detect and remove symmetries [11]. These improvements often complement
each other, for example Frisch, Jefferson, and Miguel [7] show how breaking symme-
tries can lead to effective implied constraints for BIBDs among other problems. In this
paper we show how to automatically generate a superior model for the BIBD problem.

2.1 Flattening and CSE

Flattening is the process of taking a nested expression and reducing the degree of nest-
ing by replacing a subexpression with a new variable. For example given the product
X × (Y + Z) and a target solver that does not allow sums inside products, the flatten-
ing process will add a new variable aux, replace the product with the new expression
X×aux and add a new constraint aux = Y +Z. We say that X× (Y +Z) is flattened

to X × aux and that Y + Z is extracted.
Common sub-expression elimination (CSE) was first applied in the context of finite-

domain constraint languages by Andrea Rendl [16, 15]. In its simplest form, CSE takes
two or more syntactically identical sub-expressions that must be flattened, and flattens
them all using the same auxiliary variable. This reduces both the number of constraints
and auxiliary variables. Importantly, CSE can reduce the search space dramatically [16,
15] by linking different constraints together thus strengthening constraint propagation.

2.2 Normalisation and Active CSE

One way CSE has been fruitfully extended is by matching subexpressions that are
not syntactically identical [16]. This is achieved in two ways. The first is normali-

sation, where prior to CSE the expression tree is converted to a normal form (pri-
marily by ordering the arguments of commutative operators and evaluating any con-
stant expressions). This converts some semantically equivalent expressions (such as
C = B+A+1−1 and A+B = C) to syntactically identical expressions. The second
is Active CSE, where two expressions A and B may be matched if they are identical
after some transformation (for example by applying one of De Morgan’s laws). For
example, Active CSE can match A < B with A ≥ B by a simple negation.

The algorithm introduced by Rendl [15] and used by Stuckey and Tack [18] per-
forms CSE during flattening. The algorithm maintains a hash table keyed by the ex-
pressions that have been extracted so far, and containing the new auxiliary variable for
each. When extracting an expression E, the algorithm looks up E in the hash table,
and (if present) uses the auxiliary variable in the hash table rather than creating a new
auxiliary. This algorithm has the advantage that is easily extended to active CSE. When
looking up E in the hash table, active CSE also looks up each transformation of E.
However it is not clear how this algorithm could be extended to AC-CSE. The common
subexpressions extracted by AC-CSE would not normally be extracted by flattening.

2.3 Associative-Commutative CSE

Araya, Neveu and Trombettoni [1] exploited common subexpressions among + and ×
expressions. Their work is in the context of numerical CSP solved by algorithms such as
HC4, but the reformulation is equally applicable to finite-domain CSP. They proposed
two algorithms named I-CSE and I-CSE-NC. Both algorithms apply a form of AC-CSE
prior to flattening as a separate operation.

The first pass of both algorithms is to transform the abstract syntax tree (AST) into a
directed acyclic graph where identical subexpressions are represented once. The second
step is to intersect each pair of sums and pair of products to create a set of candidate
AC-CSs. As we will see in Section 3.3 other AC-CSs (generated by the intersection of
three or more sums) can also be useful, but I-CSE and I-CSE-NC will never generate
them. Later passes extract the AC-CSs from the original expressions.

Araya et al. defined two AC-CSs f1 and f2 to be in conflict if f1 ∩ f2 %= ∅, f1 ! f2
and f2 ! f1. Two AC-CSs in conflict cannot both be extracted from the same expres-
sion. When a set of AC-CSs in conflict are subsets of the same original expression s,
then I-CSE copies s a sufficient number of times to extract each of the AC-CSs from at
least one copy. I-CSE-NC (for No Conflicts) does not copy s, it simply extracts a single
maximal subset of the candidate AC-CSs from s. Consider the following example:

v + w + x+ y = 0, v + w + x+ z = 0

v + w + y + z = 0

In this example I-CSE(-NC) would generate three AC-CSs: v + w + x, v + w + y
and v + w + z. I-CSE would duplicate each of the original constraints resulting in six
constraints and three further constraints to define the auxiliary variables.

I-CSE-NC can extract only one AC-CS. Suppose it extracts v + w + x, then at this
point v + w + y and v + w + z cease to be AC-CSs:

aux+ y = 0, aux+ z = 0, v + w + y + z = 0

aux = v + w + x

I-CSE-NC can only extract CSEs from the original expressions, so fails to exploit the
AC-CS v + w. Even on this small example I-CSE has increased the size of the model
substantially. I-CSE-NC has not, but it has missed a potentially useful AC-CS and has
not linked v + w + y + z to the other two sums.

I-CSE and I-CSE-NC are both compared to our algorithm in the experiments below.
We implement the algorithms exactly as described in Section 4 of Araya et al. [1]. Both
I-CSE and I-CSE-NC only extract AC-CSs from the original expressions, they do not
extract AC-CSs from other AC-CSs.

3 The X-CSE Algorithm

The X-CSE algorithm is implemented in Savile Row 1.6 [12]. Savile Row reads the
ESSENCE′ language and transforms it in many passes to an output for a constraint
solver. X-CSE simply becomes another pass. In this paper we consider the associa-
tive and commutative (AC) operators \/ (or), /\ (and), +, *. These are represented as
a single AST node with n children in Savile Row 1.6. There are other AC operators in
the language, notably min and max, and != between boolean expressions (exclusive
or). We leave these for future work.

Prior to running X-CSE the AST is normalised by sorting the children of all com-
mutative operators. For any AC operator ', the goal of X-CSE is to find common sets
containing two or more expressions that are contained in more than one ' expression.
The X-CSE algorithm uses a hash table map from pairs of expressions {a, b} to a list
of the ' expressions that contain both a and b. Algorithm 2 (populateMap) takes a ref-
erence to an AST node and explores the tree, populating map for each ' expression.

Algorithm 1 (X-CSE) takes a reference to the AST representing all constraints,
a reference to the global symbol table, and the AC operator '. After initialising data
structures it calls populateMap with the entire AST. Following that it enters the main
loop on line 4. On line 5 one pair is selected from map according to a heuristic. If the
pair occurs in more than one ' expression then there must exist an AC-CS including
that pair. Lines 10-20 find an AC-CS and extract it from all the relevant expressions.
The algorithm includes as many ' expressions as possible to maximise the effect of
extracting the AC-CS. Line 10 intersects all ' expressions containing the pair. A new '
expression for the AC-CS is constructed, and an auxiliary variable is created. On line 14
a constraint is created to define the auxiliary variable. Each ' expression containing
the AC-CS is replaced. At this point, lines 19 and 20 update map to include all the
newly created expressions, allowing X-CSE to extract further AC-CSs from the new
expressions. Some references to removed ' expressions will remain in map; these will
be filtered out on line 8.

3.1 Heuristics

X-CSE chooses the next pair to process by calling a heuristic on line 5. We exper-
imented with eight heuristics. There are four basic heuristics: most occurrences (i.e.
select the pair that leads to the longest list ls after line 8 of X-CSE), fewest occurrences,

Algorithm 1 X-CSE(AST, ST, ')

Require: AST: Abstract syntax tree representing the model

Require: ST: Symbol table containing decision variables

Require: !: The associative and commutative operator

1: newcons← empty list {Collect new constraints}
2: map← empty hash table mapping pairs of expressions to lists

3: populateMap(AST, map, !)
4: while map not empty do

5: pairexp← heuristic(map)

6: ls← map(pairexp) {ls is a list of ! AST nodes}
7: delete map(pairexp)

8: ls← filter(isAttached, ls) {Remove !AST nodes no longer contained in AST or newcons}
9: if length(ls) > 1 then

10: commonset← ls[1] ∩ ls[2] ∩ · · ·∩ ls[length(ls)]

11: e← fold(!, commonset)

12: bnds← bounds(e)

13: aux← ST.newAuxVar(bnds)

14: newc← (e = aux) {New constraint defining aux}
15: newcons.append(newc)

16: for all a ∈ ls do

17: newe← fold(!, (a \ commonset) ∪ {aux})

18: Replace a with newe within AST or newcons

19: populateMap(newe, map, !)
20: populateMap(newc, map, !)
21: AST← AST ∧ fold(∧, newcons)

largest AC-CS and smallest AC-CS. In some cases there exists a pair such that its cor-
responding AC-CS can be extracted without preventing any other AC-CS. We call these
non-blocking pairs and it may be helpful to process them first. We created four more
heuristics that select non-blocking pairs first, then fall back to one of the four basic
heuristics. We found no clear winner among the eight heuristics. We use the ‘most oc-
currences’ heuristic throughout the rest of this paper because it is cheap to compute and
often performs well.

Algorithm 2 populateMap(A, map, ')

Require: A: Reference to an abstract syntax tree

Require: map: Hash table mapping pairs of expressions to lists

Require: !: The associative and commutative operator

1: if A is expression of ! then

2: for all {e1, e2} ⊆ A do

3: Add A to list map[{e1, e2}]

4: for all child ∈ A.Children() do

5: populateMap(child, map, !)

3.2 Complexity Analysis

In this analysis we will use n for the number of ' expressions, k for the length of the
longest ' expression, d as the depth of the deepest ' expression in the AST, and S as
the number of nodes in the AST.

Central to the complexity analysis of X-CSE is the observation that at most k − 1
AC-CSs may be extracted from one ' by X-CSE. Recall (from Section 2.3) that two AC-
CSs in conflict cannot both be extracted from the same expression. A pair of AC-CSs
may overlap only if one is a subset of the other. Consider an AC-CS f in an expression e.
There can be no other AC-CSs involving f in e except possibly some f ′ where f " f ′.
The smallest AC-CS is size two, and extracting this replaces a size two term with a size
one term (i.e. the replacement auxiliary variable). If the original expression is size k,
we thus find one AC-CS and now have a size k − 1 expression. Iterating shows that at
most k − 1 AC-CSs may be extracted from one ' expression by X-CSE. This gives us
a global limit of O(nk) AC-CS extractions.

To populate map, populateMap traverses the AST with S nodes, and for each '
expression e it inserts a reference to e in O(k2) lists within map. Assuming hash table
operations are O(1), populateMap takes O(S + nk2) time.1

X-CSE then enters a loop that continues until map is empty. Each iteration of the
loop is as follows. We assume the heuristic takes O(1) time.2 For the given pair, its list
ls has at most n elements. Note that if the pair occurs more than once in an expression
it might be entered into ls multiple times: to keep the list at size n, when inserting an
expression e into ls we can check the last element of ls: if it is equal to e, we do not
insert e for a second time. The list ls is filtered in O(nd) time. If the list has length two
or greater, then we extract an AC-CS. For the following we assume that an AC expres-
sion is represented by a set data structure with O(1) lookup, insertion and removal.3

Creating commonset on line 10 takes O(nk) time. Computing the bounds and creating
the auxiliary variable and the new constraint can be done in O(k) time. The algorithm
then replaces commonset in each ls expression in O(nk) time. Re-populating map (on
lines 19 and 20) takes O(S+nk2) because the updated AC expressions can contain the
entire AST. Therefore the entire cost of extracting one AC-CS is O(S+nk2+nd), and
the total cost of X-CSE is O(nkS + n2k3 + n2kd).

While the complexity may seem high, the algorithm scales with the number of AC-
CSs it is able to exploit, therefore it is relatively quick when there are few or no AC-CSs,
and it takes more time when there is greater potential benefit.

3.3 Comparison with I-CSE(-NC)

X-CSE differs from the existing algorithms I-CSE(-NC) in that it can extract AC-CSs
that are intersections of more than two expressions, and AC-CSs containing auxiliary

1 This is correct if all expressions to be hashed are size O(1) and computing the hash code is

linear. If either assumption is invalid then an additional factor h is necessary, representing the

time to hash an expression.
2 As an example of an O(1) heuristic we could maintain a doubly linked list of keys in map and

have the heuristic simply remove and return the first element of the list.
3 Once again we are assuming expressions can be hashed in O(1) time.

variables (from earlier steps). Thus it has a larger palette of AC-CSs to choose from. In
the example from Section 2.3, X-CSE would first extract v + w from all three sums as
follows.

a = v + w, a+ x+ y = 0, a+ x+ z = 0, a+ y + z = 0

Second, X-CSE would extract any one of a+x, a+ y or a+ z, as follows. This second
step is not possible in I-CSE(-NC).

a = v + w, b = a+ x, b+ y = 0, b+ z = 0, a+ y + z = 0

This result is clearly better than I-CSE-NC (Section 2.3) that extracted only v + w + x
and thus did not connect the third constraint to the other two. I-CSE produced nine
constraints on this example. It is possible that the more compact model produced by
X-CSE is better. We investigate this further in Section 5.5.

4 Preprocessing and Reformulation

The number and quality of CSs found can be improved by using MINION to preprocess
an initial version of the model then feeding it back into Savile Row for CSE. Our method
is as follows. First Savile Row translates the instance to MINION (with or without X-
CSE). Then MINION is called to filter domains with SACBounds (no search), which is
a variant of SAC [3]. SACBounds applies the SAC test to prune the upper and lower
bound of each variable to exhaustion. Savile Row re-starts the translation process with
the filtered domains and translates the instance to MINION again (with or without X-
CSE). Re-starting translation allows Savile Row to simplify the constraints following
domain filtering. For example, on the BIBD problem below, some variables are assigned
by SACBounds and this allows constant folding (e.g. · · ·+ a× x+ b× y + · · · where
SACBounds assigns a = 1 and b = 0 becomes · · ·+ x+ · · ·).

A further step to promote the identification of AC-CSs is in reformulating a model to
add implied constraints consisting of AC expressions. Savile Row creates implied sum
constraints from all-different and global cardinality constraints. This is done by finding
assignments to the all-different (GCC) with the smallest and largest sums (lb and ub

resp.), then adding either
∑

≥ lb and
∑

≤ ub (when lb %= ub) or
∑

= lb = ub where
∑

is the sum of the variables in scope of the original constraint (except cardinality
variables in GCC). For example, given allDiff(x, y, z) where all variables have domain
{1 . . . 4}, we add constraints x+ y + z ≥ 1 + 2 + 3 and x+ y + z ≤ 2 + 3 + 4.

5 Case Studies

In this section we study four problems where we found AC-common subexpressions.
We use Savile Row 1.6 and the following optimisations are always applied: unifica-
tion of equal variables, domain filtering with SACBounds (as described in the section
above), and identical CSE (elimination of identical subtrees in the expression tree). In
addition, X-CSE, I-CSE or I-CSE-NC may be applied (before any form of flattening
or other CSE) as required for the experiment. Timings include both total time reported

by Savile Row (which includes the first preprocessing call to MINION) and total time
reported by MINION 1.6.1 64-bit to search for a solution. MINION is given a time limit
of 600s to solve the final model. Savile Row is executed in the Java 1.7.0 55 JIT. Each
reported timing is a mean of 5 runs. Experiments were performed on a 32-core AMD
Opteron 6272 at 2.1 GHz. All model and parameter files are available at http://pn.
host.cs.st-andrews.ac.uk/cp-2013-ac-cse-experiments.tgz.

5.1 Case study 1: BIBD

We use Puget’s model of the Balanced Incomplete Block Design (BIBD) problem, with
Lex 2 symmetry breaking constraints [14]. BIBD is parameterised by (v, k,λ) and has

r = λ(v−1)
k−1 and b = λv(v−1)

k(k−1) . The model has a v by b matrix m of boolean variables.

Each of the v rows sums to r (row constraints), and each of the b columns sums to k
(column constraints). The scalar product of each pair of rows has value λ:

∀i1, i2 ∈ {1 . . . v} . i1 < i2 → (
b

∑

j=1

m[i1, j] ∗m[i2, j]) = λ

This model initially has no common subexpressions (identical or AC). As described
above the domains are filtered by applying SACBounds. This assigns some of the vari-
ables (the entire first two rows and first column, plus some other entries). When trans-
lating again with the domains filtered by SACBounds, the scalar product constraints are
simplified causing AC-CSs to appear among scalar product constraints, and between
scalar product and row sum constraints.

We evaluated X-CSE on the 24 instances in Figure 1 of Puget ([14]). MINION times
out for 4 instances without X-CSE. For the remaining 20 instances, X-CSE always
decreases the node count. Figure 1 plots the reduction factor for the 20 instances. Harder
instances tend to show a greater reduction in node count. For the hardest instance solved
within the time limit, the node count is reduced by 78 times.

Figure 1 plots speed-up of total time with X-CSE. For the easiest instances, the re-
duction in node count does not cause a measurable difference in MINION’s run time.
The slow down in total time is caused by the up-front cost of X-CSE. On the harder
instances, MINION search takes up most of the total time and X-CSE speeds up search
substantially by reducing the number of search nodes. Figure 1 (lower) peaks with in-
stance (10, 3, 6), which has a 58-fold reduction in nodes and speed up of 24.5 times.
X-CSE typically increases the number of constraints and auxiliary variables, reducing
the node rate of MINION. Finally, (10, 3, 8) times out without X-CSE, and takes 138.6
s with X-CSE. Hence it appears on the far right of Figure 1 with a speed up of 4.39.

Implied constraints for BIBD. Frisch, Jefferson, and Miguel ([7]) derived a set of
implied constraints for BIBD that drastically improve the performance of the model.
First they observed that the first two rows and first column of the BIBD can be assigned
by manually reasoning about the constraints. Second, for each of the remaining rows i,
they reformulated the row sum constraint into four sum constraints. For example, for
indices where row 1 is set to 0, row i sums to r − λ. These four constraints are derived

1e+02 1e+04 1e+06

0
2

0
4

0
6

0
8

0

Nodes without X−CSE and without implied constraints

S
e

a
rc

h
 n

o
d

e
 r

e
d

u
ct

io
n

 f
a

ct
o

r

●●

●

●

●
●

● ●
●

●

●●

●

● ● ●
●

●●

●

●

X−CSE
Implied constraints
Implied constraints+X−CSE

2 5 10 20 50 100 200 500

0
5

1
0

1
5

2
0

2
5

Total time without X−CSE and without implied constraints (s)

S
p

e
e

d
−

u
p

 f
a

ct
o

r

●●

●

●

●

●

●

● ● ●● ●● ●● ●●● ● ● ●

●

●

●

●

X−CSE
Implied constraints
Implied constraints+X−CSE

Fig. 1. (Top) BIBD search nodes of instances that do not time out. (Bottom) BIBD total time.

from the row constraint for row i and scalar product with either row 1 or 2 using an
approach resembling manual AC-CSE.

The automated approach improves on Frisch et al. in two ways. First SACBounds
is able to assign not just the first two rows and first column but also parts of other rows
and columns. For example, on the instance (v = 22, k = 7,λ = 2) parts of the third
and fourth rows and the first eight entries of the second column are assigned. Second,
X-CSE is able to link multiple scalar product constraints and a row constraint, whereas
the implied constraints are each derived from a single scalar product constraint and a
row constraint.

The implied constraints alone do reduce node count (see Figure 1) but are not as
effective as X-CSE. For the hardest instances the implied constraints speed up solving
but by a smaller degree than X-CSE. Adding the implied constraints then applying X-
CSE is slightly more effective than X-CSE alone in reducing node count. However this
does not translate to more efficient search. Implied constraints plus X-CSE is slower
than X-CSE alone on almost all instances. Remarkably, X-CSE is able to improve the
sophisticated model on the hardest four solvable instances.

0.2 0.5 2.0 5.0 20.0 100.0 500.0

1
2

3
4

5
6

Total time without X−CSE (s)

S
p

e
e

d
 u

p
 f
a

ct
o

r
w

ith
 X

−
C

S
E

●
●●

●
●

●
●

●

●

SONET
Molnar's

●●●●

●

●● ●●

●

● ●●●

●

●

●● ●

●

●●

●

●●

●

●

●

●

●
●

●

●
●
●

● ●

●

●

●

●

●

●

●

●●●

●

●●

●

● ●
●

● ●
●
●● ●

●

●●● ●

●

●● ●

●

●

●
● ●

●

● ●

●

● ●

●

●

●

●

●
●

●● ● ●●● ●●● ●●●

●

●

2 5 10 20 50 100 200 500

0
5

0
1

5
0

2
5

0
3

5
0

Total time without X−CSE (s)

S
p

e
e

d
 u

p
 f
a

ct
o

r
w

ith
 X

−
C

S
E

Fig. 2. (Left) Results for SONET and Molnar’s Problem total time. (Right) Results for Killer

Sudoku total time.

5.2 Case study 2: The SONET problem

The SONET problem [17] is a network design problem where each node is connected
to a set of rings (fibre-optic connections). The simplified SONET problem (Section 3 of
[17]) where each ring has unlimited capacity has the following parameters: the number
of nodes n, the upper limit on the number of rings m, the maximum number of nodes per
ring r, and a set of pairs that must be connected. For each of these pairs there must exist
a ring connected to both nodes. The number of node-ring connections is minimised.

The problem is modelled as follows. We have a boolean matrix rings indexed by
[1 . . .m, 1 . . . n]. rings[a, b] indicates whether ring a is connected to node b. For each
ring a we have the sum constraint

∑n
b=1 rings[a, b] ≤ r. The connectedness constraint

between two nodes b1 and b2 is expressed as a disjunction (refined by Savile Row to a
watched-or [9]) of sums:

∃ i ∈ {1 . . .m}. (rings[ai, b1] + rings[ai, b2] ≥ 2)

The minimisation function is simply the sum of rings. Rings are indistinguishable so
we use lexicographic ordering constraints to order the rows of rings in non-decreasing
order. The static variable ordering we use is the reading order of rings and value order
is 0 then 1. This model is very simple and does not include implied or dominance
constraints [17]. The problem constraints are already flat and only the minimisation
sum needs to be flattened, thus only one auxiliary variable is created by Savile Row
without X-CSE. There are AC-CSs between the connectedness constraints, the ring
sum constraints and the minimisation sum.

We generated 24 instances with n ∈ {6 . . . 13}, r ∈ {3, 4, 5}, and m = 10. The
demand graph when n = 13 is Figure 1 of Smith [17]. For smaller n we take the
subgraph with vertices {n+ 1 . . . 13} and edges adjacent to these vertices removed.

Figure 2 plots the speed-up factor for X-CSE. As before the time limit is 600s. All
instances with n ∈ {10 . . . 13} and also instance n = 9, r = 4 timed out both with and
without X-CSE. Instances n = 9, r = 5 and n = 8, r = 3 timed out without X-CSE,
and appear on the far right of the plot with a speed-up of 4.84 and 1.55 respectively.
X-CSE improves solving speed for all but the most trivial instances.

5.3 Case study 3: Killer Sudoku

We consider the Killer Sudoku problem. The standard Killer Sudoku has a 9 × 9 grid
where each row and column are all-different, and the nine non-overlapping 3 × 3 sub-
squares are also all-different. Each slot in the grid is initially empty and takes a digit
1 . . . 9. Clues are sets of squares that sum to a given value (and are also all-different).
We found that 9× 9 Killer Sudoku instances were very easy. We generalised the puzzle
to 16 × 16 with 16 4 × 4 subsquares, and each slot takes a number 1 . . . 16. 100 in-
stances were generated at random. Traditional Killer Sudoku puzzles have exactly one
solution. The random 16 × 16 instances may be unsatisfiable and may have multiple
solutions. For brevity we do not describe how these instances are generated. All models
and instances are available on the web at the URL given in Section 5 above.

X-CSE alone does nothing because the sums in the clues are the only AC expres-
sions and they do not overlap. However the sums overlap with all-different constraints.
Each all-different constraint on a row, column or subsquare represents a permutation of
{1 . . . 16} which sum to 136. Savile Row automatically adds these implied sum con-
straints as described in Section 4. X-CSE is able to find common subexpressions among
rows, columns, sub-squares and clues.

Figure 2 plots the speed-up quotient for Killer Sudoku. Without X-CSE, 54 in-
stances timed out. With X-CSE, 28 instances timed out. As the instances become more
difficult the trend is towards greater speed-up by X-CSE. The plot peaks at 345 times
faster. On this instance, without X-CSE Savile Row took 2.26 s and MINION timed out
after exploring 2,774,028 nodes. With X-CSE, Savile Row took 1.62 s and MINION

took 0.13 s to explore 2 nodes.

5.4 Case study 4: Molnar’s Problem

Molnar’s problem [6] (CSPLib problem 035 [5]) is to find a square matrix M of inte-
gers. The model has two parameters: the size k (i.e. M has size k×k) and the maximum
absolute value of integers in M , named d. The initial domain of each element of M is
{−d . . . − 2} ∪ {0} ∪ {2 . . . d}. The first constraint is that the determinant of M is 1
or −1 (following the model of Frisch et al. [6]). For the second constraint we construct
another matrix S where each entry of S is the square of the corresponding entry of M .
The determinant of S must also be 1 or −1.

We used the Leibniz formula for determinants, and expressed a2 as a × a to allow
more AC-CSs of products. When k = 3 we have the following two matrices and two
constraints. In addition we break symmetry on M by lexicographically ordering rows
and columns.

M =

[

a b c
d e f
g h i

]

, S =

[

a2 b2 c2

d2 e2 f2

g2 h2 i2

]

|M | = aei− afh+ bfg − bdi+ cdh− ceg ∈ {−1, 1}

|S| = aaeeii− aaffhh+ bbffgg − bbddii+ ccddhh− cceegg ∈ {−1, 1}

There are multiple AC-CSs of products, for example aa and aei. Some connect
the two sums, and others connect terms within one sum. X-CSE is able to extract a

particular AC-CS from the same product more than once on this problem. Consider
aei: extracting it once creates a new constraint aei = x and modifies the expression aei
to x, and the expression aaeeii to x×aei. Now X-CSE extracts aei a second time from
the new constraint and one of the modified expressions, creating a second auxiliary
variable (that will later be unified with x).

Figure 2 plots the speed-up quotient for Molnar’s Problem on the eight instances
where k ∈ {2, 3} and d ∈ {2 . . . 5}. X-CSE appears to be more useful for the more
difficult instances. None of the instances time out. The peak speed-up quotient is 5.5.

5.5 I-CSE and I-CSE-NC

In this section we use all four problem classes to compare X-CSE to I-CSE and I-CSE-
NC. Figure 3 plots the speed-up factor for I-CSE and I-CSE-NC compared to X-CSE.
It is clear from the lower plot that I-CSE-NC performs much more poorly than X-CSE
(since almost all points are below y = 1). By comparing the two plots in Figure 3 it
is clear that I-CSE outperforms I-CSE-NC on Killer Sudoku, I-CSE-NC is preferable
for SONET, and that the two algorithms are very similar for BIBD (without implied
constraints) and Molnar’s Problem.

X-CSE performs substantially better than I-CSE on BIBD and SONET, and slightly
better on Molnar’s Problem. For BIBD, both timed out on 3 instances and each solved
21. X-CSE explored fewer search nodes on 16 of the 21 instances, and was much faster
overall. The mean time for X-CSE (on the set of 21 instances) was 16.7 s compared to
52.1 s for I-CSE.

For SONET, X-CSE always explores more (or an equal number of) search nodes
than I-CSE but total time is lower with X-CSE for all instances taking longer than 1
s. X-CSE was able to solve all instances that I-CSE could within the timeout, and one
additional one. Of the 9 that both solved, X-CSE had a mean time of 20.3 s compared
to I-CSE’s mean of 65.1 s. X-CSE and I-CSE-NC are able to solve the same set of 10
SONET instances. X-CSE had a mean time of 57.1 s while I-CSE-NC had a mean time
of 59.7 s.

For Killer Sudoku, the picture is less clear. 70 instances are solved by both I-CSE
and X-CSE. I-CSE solves one additional instance in 454 s, and X-CSE solves two
additional instances in 2.1 s and 278 s. On the 70 instances solved by both, I-CSE took
a mean time of 28.6 s, and X-CSE took a mean time of 35.2 s. I-CSE searches fewer
nodes on 16 of these 70 instances and is more than 1.5 times faster than X-CSE on 10
instances. In short, neither X-CSE nor I-CSE is clearly better than the other on Killer
Sudoku. The successes of I-CSE show that it can be worthwhile to extract conflicting
AC-CSs.

5.6 Other Problems

In this section we investigate the benefit and overhead of X-CSE on a larger set of
problems. 47 example ESSENCE′ models were included with Savile Row 1.5 [12]. Four
of these are used as case studies above. In this section we use the other 43 problems,
almost all of which were written before X-CSE was conceived. Of these 43 problems,
16 have no AC-CSs and 27 have them.

2 5 10 20 50 100 200 500

1
e

−
0

3
1

e
−

0
2

1
e

−
0

1
1

e
+

0
0

1
e

+
0

1

Total time for X−CSE (s)

S
p

e
e

d
−

u
p

 w
ith

 I
−

C
S

E

●
●

●●

●

●

●

●●●●●●●●●●●●●

●

I−CSE BIBD
I−CSE SONET
I−CSE Killer Sudoku
I−CSE Molnars

2 5 10 20 50 100 200 500

1
e

−
0

3
1

e
−

0
2

1
e

−
0

1
1

e
+

0
0

1
e

+
0

1

Total time for X−CSE (s)

S
p

e
e

d
−

u
p

 w
ith

 I
−

C
S

E
−

N
C

●

● ●● ● ●● ●●●●●●●●●●●●●

●

I−CSE−NC BIBD
I−CSE−NC SONET
I−CSE−NC Killer Sudoku
I−CSE−NC Molnars

Fig. 3. Comparison of X-CSE with I-CSE (top) and I-CSE-NC (bottom).

Figure 4 (left) plots the time taken by Savile Row (including running MINION to
enforce SACBounds). In some cases applying X-CSE speeds up Savile Row overall.
Figure 4 (right) plots total time. Only two problems searched fewer nodes with X-CSE:
Plotting (2% reduction) and waterBucket (21% reduction) and for both these problems
the search time saved is outweighed by additional time required in Savile Row. For
those problems that are sped up overall, there are two reasons: in some cases (e.g.
quasiGroup5Idempotent, pegSolitaireState) X-CSE speeds up MINION without reduc-
ing the node count; and in other cases X-CSE speeds up Savile Row and not MINION.
In summary, X-CSE provides a modest benefit on some of these problems and is a small
overhead on others.

6 Future Work

X-CSE is able to extract sets of identical terms shared among a set of AC-expressions. It
is unable to match non-identical terms that are equivalent after a simple transformation.
On the other hand, Active CSE [16] (described in Section 2.2) can match non-identical

●

●

●
●●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

1e−01 1e+00 1e+01 1e+02 1e+03

0
.6

0
.8

1
.0

1
.2

1
.4

Savile Row time without X−CSE

S
p

e
e

d
 u

p
 f
a

ct
o

r
w

ith
 X

−
C

S
E

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

5e−01 5e+00 5e+01 5e+02

0
.8

0
.9

1
.0

1
.2

1
.4

Total time without X−CSE

S
p

e
e

d
 u

p
 f
a

ct
o

r
w

ith
 X

−
C

S
E

Fig. 4. Savile Row time only (left), and total time (right) on a set of 43 problems.

expressions that are identical after a simple transformation, but usually cannot extract
AC-CSs. Suppose we had expressions x − y and y − x. They could in principle be
extracted by Active CSE, with one replaced by an auxiliary variable aux and the other
replaced by −aux . However, if we have x − y + z and y − x + z, the z term hides
the common subexpression and neither X-CSE nor Active CSE can detect it. Exactly
this situation arises in a potable water management problem (Choi and Lee [4]). Choi
and Lee extracted the common subexpressions manually and proved that constraint
propagation is strengthened by doing so.

Our proposed future work is to integrate X-CSE and Active CSE to create a sin-
gle algorithm that is able to reveal AC-CSs by performing transformations. One (very
simple) example of a transformation is multiplying by −1 to reveal the common subex-
pression in x − y + z and y − x + z. A second example is negation (followed by De
Morgan’s law) to reveal that ¬A∨¬C may be extracted from A∧C and ¬A∨¬B∨¬C.

7 Conclusions

We have introduced and described a new algorithm, X-CSE, to perform Associative-
Commutative Common Subexpression Elimination (AC-CSE) as an automated mod-
elling step for finite domain constraint satisfaction problems. X-CSE is able to find
common subexpressions which reduce search in four sample problems: BIBD, SONET,
Killer Sudoku and Molnar’s Problem. Of particular importance, X-CSE can interact
with other automated modelling techniques, thereby magnifying the power of those
techniques and X-CSE. We suggest that X-CSE is preferable to an earlier algorithm for
AC-CSE, namely I-CSE, because it is able to exploit frequently occurring short com-
mon subexpressions. In our experiments X-CSE outperformed I-CSE in most cases.
We conclude that X-CSE is a valuable addition to the armoury of automated constraint
modelling techniques, both alone and in combination with other techniques.

Acknowledgements We would like to thank the Royal Society for funding through Dr
Jefferson’s URF, and the EPSRC for funding this work through grant EP/H004092/1.

References

1. Araya, I., Neveu, B., Trombettoni, G.: Exploiting common subexpressions in numerical csps.

In: Stuckey, P.J. (ed.) CP. Lecture Notes in Computer Science, vol. 5202, pp. 342–357.

Springer (2008)

2. Beldiceanu, N., Simonis, H.: A constraint seeker: Finding and ranking global constraints

from examples. In: Lee [10], pp. 12–26

3. Bessiere, C., Cardon, S., Debruyne, R., Lecoutre, C.: Efficient algorithms for singleton arc

consistency. Constraints 16(1), 25–53 (2011)

4. Choi, C.W., Lee, J.H.M.: Solving the salinity control problem in a potable water system. In:

Bessiere, C. (ed.) CP. Lecture Notes in Computer Science, vol. 4741, pp. 33–48. Springer

(2007)

5. Frisch, A., Jefferson, C., Miguel, I.: CSPLib problem 035: Molnar’s problem. http://

www.csplib.org/Problems/prob035

6. Frisch, A.M., Jefferson, C., Miguel, I.: Constraints for breaking more row and column sym-

metries. In: Proceedings CP 2003. pp. 318–332 (2003)

7. Frisch, A.M., Jefferson, C., Miguel, I.: Symmetry-breaking as a prelude to implied con-

straints: A constraint modelling pattern. In: Proc. 16th European Conference on Artificial

Intelligence (ECAI 2004) (2004)

8. Frisch, A.M., Miguel, I., Walsh, T.: CGRASS: A system for transforming constraint satis-

faction problems. In: O’Sullivan, B. (ed.) International Workshop on Constraint Solving and

Constraint Logic Programming. Lecture Notes in Computer Science, vol. 2627, pp. 15–30.

Springer (2002)

9. Jefferson, C., Moore, N., Nightingale, P., Petrie, K.E.: Implementing logical connectives in

constraint programming. Artificial Intelligence 174, 1407–1429 (2010)

10. Lee, J.H.M. (ed.): Principles and Practice of Constraint Programming - CP 2011 - 17th Inter-

national Conference, CP 2011, Perugia, Italy, September 12-16, 2011. Proceedings, Lecture

Notes in Computer Science, vol. 6876. Springer (2011)

11. Mears, C., Niven, T., Jackson, M., Wallace, M.: Proving symmetries by model transforma-

tion. In: Lee [10], pp. 591–605

12. Nightingale, P.: Savile Row, a constraint modelling assistant (2014), http://savilerow.cs.st-

andrews.ac.uk/

13. Puget, J.F.: Constraint programming next challenge: Simplicity of use. In: Proceedings of the

Tenth International Conference on Principles and Practice of Constraint Programming (CP

2004). pp. 5–8 (2004)

14. Puget, J.F.: Symmetry breaking using stabilizers. In: Rossi, F. (ed.) CP. Lecture Notes in

Computer Science, vol. 2833, pp. 585–599. Springer (2003)

15. Rendl, A.: Effective Compilation of Constraint Models. Ph.D. thesis, University of St An-

drews (2010)

16. Rendl, A., Miguel, I., Gent, I.P., Jefferson, C.: Automatically enhancing constraint model

instances during tailoring. In: Bulitko, V., Beck, J.C. (eds.) SARA. AAAI (2009)

17. Smith, B.M.: Symmetry and search in a network design problem. In: Barták, R., Milano,

M. (eds.) CPAIOR. Lecture Notes in Computer Science, vol. 3524, pp. 336–350. Springer

(2005)

18. Stuckey, P.J., Tack, G.: Minizinc with functions. In: Gomes, C.P., Sellmann, M. (eds.)

CPAIOR. Lecture Notes in Computer Science, vol. 7874, pp. 268–283. Springer (2013)

19. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge,

MA, USA (1999)

